The Conformation of Non-Aromatic Ring Compounds. LXXXVII.* The Crystal and Molecular Structure of 3-Oxo-5 α-androstan-17ß-ol Toluene-p-sulphonate at $-170^{\circ} \mathrm{C}$

By R.A.G.de Graaff and C.'Romers
Gorlaeus Laboratories, X-ray and Electron Diffraction Section, University of Leiden, P.O. Box 75, Leiden, The Netherlands

(Received 4 March 1974; accepted 28 March 1974)
The steroid 3 -oxo- 5α-androstan- 17β-ol toluene- p-sulphonate crystallizes in the space group $P 2_{1} 2_{2} 2_{1}$. The lattice constants are $a=17 \cdot 748, b=21.711, c=5.969 \AA$. With Mo $K \alpha$ radiation at $-170^{\circ} \mathrm{C}, 2286$ significant reflexions we e measured. The final R_{w} value was 3.6%. Rings B and C are normal chairs; ring D is a $\mathrm{C}(13)$ envelope. Ring A has a low degree of puckering; no transmission of this effect to rings C and D is observed.

Introduction

This paper is a member of a series on the structure determination of steroids (e.g. Portheine, Romers \& Rutten, 1971; Knobler, Romers, Braun \& Hornstra, 1972). The knowledge of the geometry of 3 -oxo- 5α-an-drostan- 17β-ol toluene- p-sulphonate (hereinafter AOT, Fig. 1) is of importance to the understanding of the Cotton effect in 3-oxo-steroids. It has been noted by Djerassi and Klyne (Kirk, Klyne \& Wallis, 1970) that $5 \alpha-$ steroids containing a $\mathrm{C}(19)$ methyl group show a slightly smaller Cotton effect than the corresponding 19 -nor steroids. Consequently, the conformations of rings A and B should differ slightly, the methyl group being present or absent.

The related compounds 3 -oxo- 5α-oestran- 17β-ol toluene- p-sulphonate and $3 \alpha, 3 \beta$-dimethoxy- 5α-oestran17β-ol toluene- p-sulphonate (hereinafter EMT) are also under investigation in our laboratory. The synthesis of the former is still in progress, while a description of the structure of the latter is presented in the paper following this one (de Graaff, van der Ende \& Romers, 1974).

Experimental

The steroid AOT was recrystallized as needles, the longest direction being [001]. The lattice constants (Table 1) were measured with a three-circle diffractometer at room temperature and at $-170^{\circ} \mathrm{C}$ using $\mathrm{Cu} K \alpha$ radiation ($\lambda=1 \cdot 54178$).

[^0]

Fig. 1. Numbering of atoms in AOT.

Table 1. Crystallographic data on AOT at 20 and $-170^{\circ} \mathrm{C}$

Quoted errors are e.s.d.'s.
3-Oxo- 5α-androstan-17 β-ol toluene- p-sulphonate
$\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{~S}$
$M=444 \cdot 7$, m.p. $182^{\circ} \mathrm{C}$
Space group $P 2_{1} 2_{1} 2_{1}, Z=4$

$20^{\circ} \mathrm{C}$	
$a=17.954(4) \AA$	$a=17.748(3) \AA$
$b=22.067(5)$	$b=21.711(3)$
$c=6.032(3)$	$c=5.969(2)$
$\mu\left(\mathrm{Cu} \mathrm{K} \mathrm{\alpha)}=14.6 \mathrm{~cm}^{-1}\right.$	Total number of reflexions 3029
$\mu(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=1.7 \mathrm{~cm}^{-1}$	Unobserved reflexions 743
$d_{\text {obs }}=1.27 \mathrm{~g} \mathrm{~cm}^{-3}$	$\|E\|=0.88$
$d_{x}=1.282 \mathrm{~g} \mathrm{~cm}^{-3}$	$\left\|E^{2}-1\right\|=0.78$

From the systematic absence of reflexions $h 00,0 k 0$, $00 l$ for $h, k, l=2 n+1$ the space group $P 2_{1} 2_{1} 2_{1}$ follows directly. The observed density indicates the presence of four molecules in the unit cell.
The reflexion intensities of a crystal of dimensions $0.5 \times 0.3 \times 0.15 \mathrm{~mm}$ were collected with a three-circle diffractometer at $-170^{\circ} \mathrm{C}$ using Mo $K \alpha$ radiation ($\lambda=$ $0.71069 \AA$) and a graphite monochromator. The recording technique has been described previously (Verschoor \& Keulen, 1971; Portheine et al., 1972). In total, 2286 reflexions were observed with a count of at least twice the standard deviation (based on counting statistics only). 743 reflexions not satisfying this criterion were labelled as not significant. The maximum glancing angle used was $27 \cdot 5^{\circ}$. The difference between minimum and maximum transmission for the largest and smallest path lengths being well within the experimental error (95 and 97.4% respectively), no correction for absorption was applied. The intensities were reduced to structure factors in the usual way. Subsequently, normalized structure factors E were calculated using the value $B=1.46 \AA^{2}$ derived from a Wilson plot.

Structure determination

The structure was determined by direct methods using a multiple-solution program (Kennard, Isaacs, Motherwell, Coppola, Wampler, Larson \& Watson, 1971). The starting set of reflexions and their associated phases are listed in Table 2. No less than five reflexions could be phased by applying the \sum_{1} relation (Hauptman \& Karle, 1953). Phases $n \pi / 4, n=1,3,5,7$ were assigned to the reflexions 993 and 884 . The reflexion $13,10,1$ was given the values $\pi / 4$ and $3 \pi / 4$ only, since the values $5 \pi / 4$ and $7 \pi / 4$ resulted in solutions enantiomorphic with those obtained with $3 \pi / 4$ and $\pi / 4$, respectively.

Table 2. Starting set of reflexions

h	k	l	E	Phase
Origin-defining reflexions				
9	17	0	$2 \cdot 80$	$-\pi / 2$
0	7	2	2.45	$\pi / 2$
0	17	1	2.38	$\pi / 2$
\sum_{1} reflexions				
0	0	6	$4 \cdot 13$	0
16	0	0	$3 \cdot 04$	0
0	18	0	$2 \cdot 86$	0
0	14	0	2.76	0
0	6	0	$2 \cdot 49$	0
Symbolic reflexions				
9	9	3	2.49	$n \pi / 4, n=1,3,5,7$
8	8	4	$3 \cdot 27$	$n \pi / 4, n=1,3,5,7$
13	10	1	$2 \cdot 44$	$n \pi / 4, n=1,3$

The 32 starting sets were extended by using the tangent formula (Karle \& Karle, 1969). The solutions obtained were checked by a number of criteria: minimum value of R (Karle), maximum of \sum_{2} relations used, maximum value of the reliability parameter α, maximum internal consistency and maximum number of phases obtained.

Since a few groups of starting sets had converged to essentially the same solution, only the best of each group was considered.

From the remaining solutions an E map was calculated, in a sequence suggested by the aforementioned criteria.

The E maps were scanned with two programs. The first lists all peaks above a certain minimum value together with their respective heights; the second calculates distances and 'valency angles' in the fully generated unit cell (Motherwell, de Graaff \& Verschoor, unpublished). The E map first selected proved to be the correct one. In this map the carbon atoms belonging to rings A and $B, \mathrm{C}(19)$, the sulphur atom, three oxygen atoms attached to sulphur and three carbon atoms of the benzene ring could be identified.

A structure-factor calculation resulted in an R_{w} value of 35%. [For the definition of R and R_{w}, see Knobler et al. (1972).]

After the refinement we returned to the E map. The positions of the sulphur and two oxygen atoms were
used to calculate a minimum function (Buerger, 1951) based on a modified E^{2} map. In the resulting map all heavy atoms could be located. The sharpening of the Patterson function according to Jacobsen, Wunderlich \& Lipscomb (1961) was essential. Only a few atoms could be recognized in the corresponding unsharpened function.

As will be shown in the next paper (de Graaff et al., 1974) the combination of direct and Patterson methods is particularly favourable in the case of the former yielding a partial solution and the latter not producing recognizable Harker interactions. A similar procedure has been suggested by Schenk (1972).

Refinement

The Fourier map based on the model described in the previous section showed all heavy atoms except $\mathrm{C}(12)$ and C(7): $R_{w}=29 \%$. Using unitary weights the positional parameters and individual isotropic B values of all atoms were refined by the block-diagonal leastsquares method: $R_{w}=13 \%$. At this point the individual reflexions were weighted according to the formula $w(h k l)=1 / \sigma^{2}(h k l)$. The variance $\sigma^{2}(h k l)$ was calculated from $\sigma^{2}(h k l)=\sigma^{2}$ (counting statistics) $+0.03 F^{2}(h k l)$, $F(h k l)$ denoting the observed structure factor.

The hydrogen atoms were located in a difference Fourier map. Next, all heavy atoms were refined anisotropically, keeping the hydrogens at fixed positions with fixed values for the isotropic B 's, equal to the B 's of the parent atoms: $R_{w}=4 \%$. The hydrogen atoms were then refined isotropically, while constraining the parameters of the heavy atoms to their current values: $R_{w}=3.7 \%$. Finally, the heavy atoms were once more refined during two cycles. The final R and R_{w} values (observed reflexions only) are 5.8 and 3.6%. A list of observed and calculated structure factors is available on request.* The positional parameters and their estimated standard deviations are listed in Table 3. The thermal parameters may be found in Table 4. The coordinates of the hydrogen atoms and their isotropic temperature factors are given in Table 5.

Discussion of the structure

The bond lengths, valency and endocyclic torsion angles of AOT are given in Fig. 2.

Adding 40% to the calculated standard deviations - thereby allowing for the optimistic estimates of our L.S. program - we arrive at values of $0.004,0.005$, $0.006,0.007$ and $0.04 \AA$ for the average standard deviations for S-O, S-C, C-O, C-C and C-H bond lengths, respectively. The corresponding errors for valency and

[^1]Table 3. Fractional coordinates of AOT chosen in conformity with the accepted absolute configuration and with respect to a right-handed reference system The estimated standard deviations are given in parentheses.

C(1)	$0.0623(34)$	$0.6325(33)$	$1.0029(40)$
$\mathrm{C}(2)$	$-0.0223(34)$	$0.6394(36)$	$0.9429(43)$
$\mathrm{C}(3)$	$-0.0403(30)$	$0.6985(34)$	$0.8252(41)$
$\mathrm{C}(4)$	$0.0177(31)$	$0.7219(34)$	$0.6596(43)$
$\mathrm{C}(5)$	$0.0995(34)$	$0.7129(35)$	$0.7315(37)$
$\mathrm{C}(6)$	$0.1536(33)$	$0.7359(33)$	$0.5505(40)$
$\mathrm{C}(7)$	$0.2353(32)$	$0.7319(32)$	$0.6264(39)$
$\mathrm{C}(8)$	$0.2560(32)$	$0.6683(33)$	$0.7138(36)$
$\mathrm{C}(9)$	$0.1992(31)$	$0.6454(33)$	$0.8916(35)$
$\mathrm{C}(10)$	$0.1165(31)$	$0.6460(34)$	$0.8090(39)$
$\mathrm{C}(11)$	$0.2239(31)$	$0.5830(32)$	$0.9898(42)$
$\mathrm{C}(12)$	$0.3050(32)$	$0.5822(33)$	$1.0762(39)$
$\mathrm{C}(13)$	$0.3593(32)$	$0.6030(34)$	$0.8951(37)$
$\mathrm{C}(14)$	$0.3342(31)$	$0.6673(33)$	$0.8131(38)$
$\mathrm{C}(15)$	$0.4012(34)$	$0.6913(35)$	$0.6776(42)$
$\mathrm{C}(16)$	$0.4719(32)$	$0.6629(33)$	$0.7947(41)$
$\mathrm{C}(17)$	$0.4383(34)$	$0.6203(32)$	$0.9757(38)$
$\mathrm{C}(18)$	$0.3651(32)$	$0.5561(35)$	$0.7051(38)$
$\mathrm{C}(19)$	$0.1038(32)$	$0.5986(36)$	$0.6207(40)$
$\mathrm{O}(3)$	$-0.0998(22)$	$0.7250(23)$	$0.8532(29)$
$\mathrm{O}(1)$	$0.5646(24)$	$0.5030(24)$	$1.2336(25)$
$\mathrm{O}(2)$	$0.5537(23)$	$0.6148(22)$	$1.3089(25)$
$\mathrm{O}(4)$	$0.4819(20)$	$0.5631(22)$	$1.0101(27)$
S	$0.55643(9)$	$0.56483(9)$	$1 \cdot 1518(11)$
$\mathrm{C}\left(1^{\prime}\right)$	$0.6288(31)$	$0.5786(33)$	$0.9562(39)$
$\mathrm{C}\left(2^{\prime}\right)$	$0.6799(34)$	$0.6254(34)$	$0.9974(43)$
$\mathrm{C}\left(3^{\prime}\right)$	$0.7398(34)$	$0.6350(34)$	$0.8534(44)$
$\mathrm{C}\left(4^{\prime}\right)$	$0.7481(32)$	$0.5984(35)$	$0.6615(43)$
$\mathrm{C}\left(5^{\prime}\right)$	$0.6952(32)$	$0.5522(35)$	$0.6231(39)$
$\mathrm{C}\left(6^{\prime}\right)$	$0.6360(33)$	$0.5425(36)$	$0.7660(39)$
$\mathrm{C}\left(7^{\prime}\right)$	$0.8136(34)$	$0.6083(38)$	$0.5048(46)$

torsion angles not involving hydrogen are 0.4 and 0.6°, those involving hydrogen about 4°.

Accepting equivalence of all $\mathrm{C}-\mathrm{H}$ distances, $\mathrm{C}-\mathrm{C}-\mathrm{H}$ angles and $\mathrm{H}-\mathrm{C}-\mathrm{H}$ angles (excepting hydrogen atoms attached to the phenyl ring) we calculate mean values of $0.98 \AA, 109$ and 107°, respectively. These values are in good agreement with the results obtained by Braun, Hornstra \& Leenhouts (1969). Estimated standard errors of $0.04 \AA, 3.8$ and 4.4° were obtained. These results agree nicely with the estimates from our L.S. program.

With the exception of bonds $C(1)-C(2)$ and $C(15)-$ $\mathrm{C}(16)$ no abnormally large or small bond lengths are noted. The observed length of the bond $\mathrm{C}(1)-\mathrm{C}(2)$ ($1.551 \AA$) is exceptionally long. As yet no reasonable explanation can be offered for this anomaly. The mean length of this bond calculated from 15 saturated $5 \alpha-$ steroids (Romers, Altona, Jacobs \& De Graaff, 1974) is $1.537 \AA$. The difference of $0.014 \AA$ from the observation in this study must be considered significant on a 95% confidence level. The bond C(15)-C(16) ($1.563 \AA$) is also exceptionally long. This is caused by the partial eclipsing of the hydrogen atoms due to the small endocyclic torsion angle about the bond $\mathrm{C}(15)-\mathrm{C}(16)$ (4.8 ${ }^{\circ}$).

The overall shape of the molecule is elongated and slightly curved towards the α-side, causing the vectors $C(10)-C(9)$ and $C(13)-C(18)$ to diverge. Some Newman projections at salient points in the molecule are shown in Fig. 3.

Table 4. Vibrational parameters $U_{i j}$ of $A O T$ and their estimated standard deviations $\left(\times 10^{4} \AA^{2}\right)$
The temperature factor is defined as $\exp \left[-2 \pi^{2} \sum_{i j} h_{i} h_{j} a_{i}^{*} a_{j}^{*} U_{i j}\right], i, j=1,2,3$.

	U_{11}	U_{22}	U_{33}	$2 U_{12}$	$2 U_{23}$	$2 U_{13}$
C(1)	165 (16)	178 (19)	207 (22)	76 (34)	-23(40)	34 (41)
$\mathrm{C}(2)$	194 (17)	249 (21)	227 (25)	-14(37)	125 (43)	-41 (40)
C(3)	178 (17)	231 (20)	183 (22)	-23 (30)	245 (44)	167 (38)
C(4)	183 (16)	218 (20)	231 (24)	4 (34)	92 (47)	-20 (43)
C(5)	201 (16)	158 (19)	143 (22)	37 (33)	94 (37)	25 (37)
C(6)	212 (17)	142 (20)	198 (26)	-4 (33)	-10 (40)	95 (40)
C(7)	204 (17)	174 (20)	154 (24)	18 (32)	-34 (41)	41 (39)
C(8)	174 (16)	153 (19)	92 (22)	42 (32)	54 (37)	-9 (34)
C(9)	124 (15)	147 (18)	103 (22)	40 (30)	16 (37)	16 (33)
C(10)	186 (17)	154 (19)	137 (22)	72 (30)	-55 (39)	-11 (36)
C(11)	177 (16)	157 (20)	212 (23)	9 (30)	-103 (41)	70 (38)
C(12)	191 (17)	180 (20)	196 (24)	22 (32)	-26 (39)	-20 (37)
C(13)	200 (17)	180 (19)	107 (22)	-24 (32)	-16 (39)	5 (36)
C(14)	164 (16)	156 (19)	110 (21)	49 (31)	65 (41)	50 (36)
C(15)	209 (16)	187 (19)	205 (23)	9 (32)	-22 (43)	37 (42)
C(16)	151 (15)	161 (19)	258 (26)	-7 (32)	75 (42)	77 (38)
C(17)	191 (16)	154 (19)	157 (22)	-84 (33)	38 (37)	6 (41)
C(18)	224 (17)	179 (20)	213 (24)	-60 (35)	78 (42)	-25 (37)
C(19)	214 (17)	231 (21)	202 (25)	3 (33)	122 (42)	-15 (42)
$\mathrm{O}(3)$	208 (11)	266 (15)	328 (18)	45 (24)	102 (34)	-55 (33)
$\mathrm{O}(1)$	272 (12)	208 (13)	227 (16)	67 (26)	-77 (26)	52 (29)
$\mathrm{O}(2)$	249 (11)	212 (13)	171 (16)	113 (25)	98 (27)	69 (30)
$\mathrm{O}(4)$	150 (10)	160 (12)	222 (15)	-53 (24)	86 (31)	-76 (26)
S	177 (3)	193 (4)	188 (5)	26 (9)	-10 (11)	34 (11)
$\mathrm{C}\left(1^{\prime}\right)$	144 (16)	235 (22)	173 (23)	63 (32)	-68(40)	41 (37)
$\mathrm{C}\left(2^{\prime}\right)$	238 (18)	211 (22)	225 (24)	61 (34)	80 (45)	25 (42)
$\mathrm{C}\left(3^{\prime}\right)$	235 (18)	210 (21)	330 (27)	-125 (34)	114 (49)	16 (46)
$\mathrm{C}\left(4^{\prime}\right)$	194 (16)	250 (21)	230 (24)	83 (34)	-72 (45)	-15 (42)
$\mathrm{C}\left(5^{\prime}\right)$	242 (17)	250 (22)	196 (24)	88 (35)	30 (44)	15 (41)
C(6)	204 (17)	226 (21)	211 (25)	-50 (35)	26 (41)	98 (38)
$\mathrm{C}\left(7^{\prime}\right)$	240 (19)	253 (22)	347 (28)	11 (37)	-50 (51)	-47 (45)

Table 5. Fractional coordinates and isotropic B values (\AA^{2}) of hydrogen atoms of $A O T$
The estimated standard deviations are given in parentheses.

	x	y	z	B
H(11)	0.077 (26)	$0 \cdot 588$ (25)	1.047 (31)	$1 \cdot 67$ (71)
H(12)	0.076 (28)	$0 \cdot 662$ (27)	$1 \cdot 132$ (31)	$1 \cdot 42$ (74)
H(21)	-0.030 (27)	$0 \cdot 610$ (28)	$0 \cdot 854$ (32)	$2 \cdot 36$ (73)
H(22)	-0.060 (39)	$0 \cdot 639$ (35)	1.080 (39)	$5 \cdot 35$ (106)
H(41)	0.008 (24)	$0 \cdot 702$ (25)	$0 \cdot 531$ (32)	0.71 (61)
H(42)	0.008 (26) ${ }^{4}$	$0 \cdot 768$ (26)	$0 \cdot 632$ (30)	0.94 (70)
H(5)	$0 \cdot 111$ (25)	0.739 (26)	0.854 (31)	$1 \cdot 24$ (66)
H(61)	$0 \cdot 149$ (24)	$0 \cdot 709$ (24)	$0 \cdot 416$ (27)	$0 \cdot 00$ (58)
H(62)	$0 \cdot 137$ (25)	0.780 (25)	0.570 (31)	$1 \cdot 32$ (64)
H(71)	$0 \cdot 242$ (27)	0.764 (26)	0.756 (29)	$0 \cdot 54$ (69)
H(72)	$0 \cdot 273$ (26)	${ }_{4} 0.745$ (27)	0.515 (34)	$1 \cdot 34$ (69)
H(8)	$0 \cdot 254$ (24)	10.642 (23)	$0 \cdot 595$ (26)	$0 \cdot 23$ (58)
H(9)	$0 \cdot 197$ (26)	\$0.676 (24)	1.014 (32)	1.08 (64)
H(111)	$0 \cdot 194$ (25)	\$0.567 (26)	1.084 (28)	1.24 (67)
H(112)	$0 \cdot 218$ (22)	? 0.550 (24)	$0 \cdot 877$ (26)	$0 \cdot 00$ (59)
H(121)	$0 \cdot 321$ (27)	$0 \cdot 539$ (28)	$1 \cdot 126$ (31)	$1 \cdot 20$ (72)
H(122)	$0 \cdot 311$ (31)	$0 \cdot 610$ (32)	$1 \cdot 190$ (35)	$3 \cdot 45$ (86)
H(14)	$0 \cdot 333$ (28)	$0 \cdot 693$ (27)	$0 \cdot 950$ (32)	$2 \cdot 41$ (74)
H(151)	$0 \cdot 393$ (24)	$0 \cdot 687$ (23)	$0 \cdot 505$ (31)	$0 \cdot 00$ (61)
H(152)	$0 \cdot 400$ (25)	0.735 (24)	$0 \cdot 667$ (30)	$0 \cdot 11$ (61)
H(161)	$0 \cdot 507$ (27)	0.693 (27)	$0 \cdot 861$ (32)	1.08 (75)
H(162)	$0 \cdot 499$ (28)	$0 \cdot 642$ (29)	$0 \cdot 686$ (33)	1.58 (73)
H(17)	$0 \cdot 434$ (23)	$0 \cdot 639$ (22)	$1 \cdot 120$ (25)	$0 \cdot 00$ (52)
H(181)	$0 \cdot 317$ (25)	$0 \cdot 550$ (26)	$0 \cdot 645$ (30)	$0 \cdot 54$ (66)
H(182)	$0 \cdot 409$ (28)	$0 \cdot 568$ (28)	$0 \cdot 607$ (31)	2.31 (76)
H(183)	$0 \cdot 384$ (27)	$0 \cdot 518$ (27)	$0 \cdot 765$ (31)	1.41 (74)
H(191)	$0 \cdot 141$ (29)	0.601 (30)	$0 \cdot 517$ (36)	2.36 (80)
$\mathrm{H}(192)$	0.055 (26)	$0 \cdot 607$ (24)	$0 \cdot 564$ (27)	0.66 (60)
H(193)	$0 \cdot 111$ (28)	0.556 (30)	$0 \cdot 667$ (34)	1.88 (77)
H($\mathbf{2}^{\prime} 1$)	0.673 (25)	0.651 (26)	$1 \cdot 127$ (30)	0.89 (65)
H(3'1)	0.780 (33)	0.671 (31)	$0 \cdot 884$ (35)	4.51 (96)
$\mathrm{H}\left(5^{\prime} 1\right)$	$0 \cdot 698$ (25)	$0 \cdot 526$ (24)	$0 \cdot 489$ (30)	0.95 (66)
H(6'1)	0.597 (27)	$0 \cdot 509$ (27)	$0 \cdot 750$ (29)	1.02 (69)
H(7'1)	$0 \cdot 864$ (31)	$0 \cdot 578$ (29)	$0 \cdot 532$ (38)	$3 \cdot 54$ (92)
$\mathrm{H}\left(7^{\prime} 2\right)$	0.833 (30)	$0 \cdot 654$ (30)	0.514 (37)	$2 \cdot 40$ (85)
H(7'3)	0.797 (34)	$0 \cdot 588$ (33)	$0 \cdot 368$ (38)	$4 \cdot 48$ (100)

The conformation of ring A is a distorted chair. The mean angle of puckering is 48.4°, a low value compared with 55.9° for cyclohexane (Geise, Buys \& Mijlhoff, 1971). A similar value ($49 \cdot 6^{\circ}$) was found by Ferguson, Macaulay, Midgley, Robertson \& Whalley (1970) for 4,4-dimethyl-3-oxo-5 α-androstan-17 β-ol iodoacetate. These authors attribute the deformation to a rotation about the $\mathrm{C}(4)-\mathrm{C}(5)$ bond due to interaction of the axial methyl groups on $\mathrm{C}(4)$ and $\mathrm{C}(10)$.

Fig. 2. Geometrical entities of AOT.

Fig. 3. Some Newman projections at important points in the molecule.

Table 6. Bond lengths (\AA) and valency angles $\left({ }^{\circ}\right)$ of rings C and D of $A O T, E M T$ and $M A B$

	AOT	EMT	MAB
$13-14$	1.545	1.554	1.545
$14-15$	1.530	1.536	1.546
$15-16$	1.563	1.561	1.526
$16-17$	1.542	1.543	1.527
$13-17$	1.529	1.527	1.530
$13-12$	1.517	1.557	1.518
$13-18$	1.526	1.527	1.557
$17-4$	1.478	1.478	1.487
$8-14$	1.509	1.505	1.531
$12-11$	1.529	1.539	1.544
$11-9$	1.540	1.522	1.532
$9-8$	1.546	1.544	1.540

	AOT	EMT	MAB
$17-13-14$	$98 \cdot 2$	$96 \cdot 9$	$96 \cdot 6$
$13-14-15$	$104 \cdot 5$	$104 \cdot 6$	$104 \cdot 0$
$14-15-16$	$104 \cdot 7$	$102 \cdot 6$	$104 \cdot 3$
$15-16-17$	$103 \cdot 9$	$105 \cdot 3$	$104 \cdot 7$
$16-17-13$	$106 \cdot 3$	$105 \cdot 0$	$105 \cdot 2$
$12-13-18$	$112 \cdot 0$	$111 \cdot 0$	$111 \cdot 4$
$17-13-18$	$109 \cdot 6$	$110 \cdot 8$	$111 \cdot 1$
$13-12-11$	$110 \cdot 8$	$110 \cdot 4$	$110 \cdot 8$
$12-11-9$	$114 \cdot 0$	$113 \cdot 6$	$113 \cdot 3$
$11-9-8$	$111 \cdot 0$	$112 \cdot 4$	$113 \cdot 2$
$9-8-14$	$109 \cdot 0$	$108 \cdot 7$	$109 \cdot 4$
$8-14-13$	$113 \cdot 7$	$113 \cdot 8$	$112 \cdot 0$
$12-13-14$	$108 \cdot 2$	$109 \cdot 1$	$108 \cdot 6$

In our case an explanation is less easily available. An attempt has been made to reproduce the geometry of AOT by a Westheimer type of computation, using the force-field of Altona (Altona \& Hirschmann, 1970; Altona \& Sundaralingam, 1970). The results, especially for ring A, were rather disappointing. Large discrepancies in the torsion angles in ring A (and to a certain extent in ring B) were obtained. However, the minimum of the potential energy curve is extremely flat for a ring of this particular type. A change of 10° in the endocyclic torsion angles about $\mathrm{C}(2)-\mathrm{C}(3)$ and $\mathrm{C}(3)-$ $\mathrm{C}(4)$ resulted in an energy increase of no more than $0.20 \mathrm{kcal} \mathrm{mol}^{-1}$. Therefore, crystal forces may be the cause of the observed abnormally low angle of puckering. No transmission of this distortion to the rings C and D is observed. By comparison of the geometrical entities of AOT, EMT (see next paper) and 2β-methyl-3-oxo-oestra-4-en-17 β-ol $\quad p$-bromobenzenesulphonate (Cody \& Duax, 1972; hereafter MAB) a striking agreement between corresponding values in rings C and D is obvious (Tables 6 and 7). However, there is a slight effect in ring B. The torsional angle $C(6)-C(7)-C(8)-C(9)$ is especially affected, being $50 \cdot 6^{\circ}$ in AOT compared with 55.8° in EMT and 61.7° in MAB. Ring D is described by the phase angle $\Delta=$ 24.6° and the angle of puckering $\varphi_{m}=47.5^{\circ}$ (Altona, Geise \& Romers, 1968). The conformation tends to a $C(13)$ envelope.

Table 7. Torsion angles $\left({ }^{\circ}\right)$ of rings C and D of $A O T$, EMT and MAB

	AOT	EMT	MAB
$17-13-14-15$	$46 \cdot 0$	$49 \cdot 3$	$47 \cdot 1$
$13-14-15-16$	$-32 \cdot 1$	$-34 \cdot 1$	$-30 \cdot 9$
$14-15-16-17$	$4 \cdot 8$	$5 \cdot 1$	$1 \cdot 1$
$15-16-17-13$	$24 \cdot 6$	$26 \cdot 1$	$29 \cdot 5$
$16-17-13-14$	$-43 \cdot 2$	$-45 \cdot 3$	$-46 \cdot 9$
$12-13-14-8$	$-60 \cdot 7$	$-59 \cdot 6$	$-62 \cdot 3$
$13-14-8-9$	$58 \cdot 6$	$56 \cdot 9$	$57 \cdot 9$
$14-8-9-11$	$-52 \cdot 2$	$-52 \cdot 4$	$-50 \cdot 8$
$8-9-11-12$	$52 \cdot 1$	$52 \cdot 5$	$49 \cdot 2$
$9-11-12-13$	$-54 \cdot 5$	$-53 \cdot 9$	$-52 \cdot 7$
$11-12-13-14$	$55 \cdot 8$	$55 \cdot 0$	$57 \cdot 7$

The packing of AOT is shown in Table 8: each molecule is surrounded by 12 nearest neighbours. We observe no remarkably short intermolecular distances.

One of the authors (de Graaff) wishes to thank Mrs Olga Kennard and the members of her group for the kindness and helpfulness encountered during his stay in Cambridge in November 1969. The authors are

Table 8. Packing of AOT

I	x	y	z
II	x	y	$1+z$
III	x	y	$-1+z$
IV	$\frac{1}{2}+x$	$\frac{1}{2}-y$	$1-z$
V	$\frac{1}{2}+x$	$\frac{1}{2}-y$	$2-z$
VI	$-\frac{1}{2}+x$	$\frac{1}{2}-y$	$2-z$
VII	$-\frac{1}{2}+x$	$\frac{1}{2}-y$	$1-z$
VIII	$1+x$	y	z
IX	$-1+x$	y	z
X	$\frac{1}{2}-x$	$1-y$	$\frac{1}{2}+z$
XI	$\frac{1}{2}-x$	$1-y$	$-\frac{1}{2}+z$
XII	$1 \frac{1}{2}-x$	$1-y$	$\frac{1}{2}+z$
XIII	$1 \frac{1}{2}-x$	$1-y$	$-\frac{1}{2}+z$

indebted to Dr Verschoor for many valuable discussions.

References

Altona, C., Geise, H. J. \& Romers, C. (1968). Tetrahedron, 24, 13-32.
Altona, C. \& Hirschmann, H. (1970). Tetrahedron, 26, 2173-2183.
Altona, C. \& Sundaralingam, M. (1970). Tetrahedron, 26, 925-939.
Braun, P. B., Hornstra, J. \& Leenhouts, J. I. (1969). Philips Res. Rep. 24, 427-474.
Buerger, M. (1951). Acta Cryst. 4, 531-544.
Cody, V. \& Duax, W. L. (1972). Cryst. Struct. Commun. 1, 439-442.
Ferguson, G., Macaulay, E. W., Midgley, J. M., Robertson, J. M. \& Whalley, W. B. (1970). J. Chem. Soc. (D), pp. 954-955.

Geise, H. J., Buys, H. R. \& Mijlhoff, F. C. (1971). J. Mol. Struct. 9, 447-454.
Graaff, R. A. G. de, van der Ende, C. A. M. \& Romers, C. (1974). Acta Cryst. B30, 2034-2037.

Hauptman, H. \& Karle, J. (1953). Solution of the Phase Problem. I. The Centrosymmetric Crystal. A.C.A. monograph No. 3. Pittsburgh: Polycrystal Book Service.
Jacobsen, R. A., Wunderlich, J. A. \& Lipscomb, W. N. (1961). Acta Cryst. 14, 598-607.

Karle, I. L. \& Karle, J. (1969). Acta Cryst. B25, 428-434.
Kennard, O., Isaacs, N. W., Motherwell, W. D. S., Coppola, J. C., Wampler, D. L., Larson, A. C. \& Watson, D. G. (1971). Proc. Roy. Soc. A 325, 401-436.
Kirk, D. N., Klyne, W. \& Wallis, S. R. (1970). J. Chem. Soc. (C), pp. 350-360.
Knobler, C., Romers, C., Braun, P. B. \& Hornstra, J. (1972). Acta Cryst. B28, 2097-2103.

Portheine, J. C., Romers, C. \& Rutten, E. W. M. (1972). Acta Cryst. B28, 849-857.
Romers, C., Altona, C., Jacobs, H. J. C. \& de Graaff, R. A. G. (1974). Terpenoids and Steroids, Specialist Periodical Reports, Vol. IV. London: The Chemical Society.
Schenk, H. (1972). Acta Cryst. A 28, 412-421.
Verschoor, G. C. \& Keulen, E. (1971). Acta Cryst. B27, 134-145.

[^0]: * Part LXXXVI: Acta Cryst. B30, 1947-1952.

[^1]: * This list has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 30431 ($11 \mathrm{pp} ., 1$ microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

